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AFIT/GCS/ENG/93D-23

Abstract

This research investigated the feasibility of composing time-dependent specifications

in Architect, a domain-oriented application composition and generation system being de-
veloped at the Air Force Institute of Technology (AFIT). Architect composes formally

specified domain objects into an executable software specification that can be used to

verify program correctness prior to generation of language specific code. As part of this

research, domain modeling techniques were investigated and a candidate process was se-

lected for evaluation. The process was used to develop domain models for two diverse

time-dependent domains. Using object-oriented analysis, formal specifications were devel.
oped for a collection of event-driven logic circuit components and a cotlection of time-driven

cruise mishiile components. Applications from each domain were composed in Architect and

executed to verify correct behavior.
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DOMAIN MODELING OF TIME-DEPENDENT SYSTEMS

1. Introduction

1. 1 Background

Much of the imprecision in software specifications occurs during the transfer of knowl-

edge about the problem space from the application specialist who defines the problem to

the software engineer who implements a solution. The application specialist and the soft-

ware engineer are each fluent in the language of his own domain but are often unversed

in the language of the other. Because there is no common formal language with which to

communicate requirements, the transfer of knowledge is generally done through informal

specifications or in a natural language such as English. Imprecise specifications frequently

result in softwar, solutions that do not meet user expectations or requirements.

A solution currently being investigated by the Knowledge Based Software Engineer-
in, (KBSE) Research Group at the Air Force Institute of Technology (AFIT) involves

development of doruain-oriented tool* that allow the application specialist to formally

specify reqwurements within his own domain. Working in a familiar environment using

domain.specific terminology (textual interface) and/or symbology (graphical interface).

the application specialist can develop his own applications without need for an interme-

diate mapping to an informal specification. If the formal specifications are mapped to

an executable specification language, the application can be tested for proper behavior

and functionality, and modified as required until proper behavior is exhibited. The KBSE

res•arch group at AFIT is developing a domain-onented application composition system

called Architect The orginal version. developed in 1992 by Randour (18) and Anderson

(1), had a textual inte'rface. In 1993. Weide (24) developed a graphical interface called

Architect Visual System Interface (AVSI). Architect is built within the Software Refinery

onvironmeat which consists of the Refineitv wid-spectrum lanu•ap. the Dialect grammar

tool, and the Intervista graphical tool (20) As a wide-spectrum language. Refine is suit-

able for p,.pre~sing applications at the code Ievel or at the specification level, At the code



level, the user specifies how transformations are implemented; at the specification level,

the user only has to specify what transformations are needed. Using high-level abstractions

such as set formers, rules, and transforms, the user can specify a set of post-conditions

that must be made true whenever a set of pre-conditions are true and not be concerned

with the mechanisms of how the post-conditions are met.

A knowledge base in Architect consists of domain objects, a domain-specific language

(DSL), and icon descriptions. Each domain object (class) contains a Refine code description

of its interfaces, attributes, and functions. The DSL is a Dialect grammar that defines the

format for saving and parsing text file descriptions of domain objects. Icon descriptions

define how each object class appears in the graphical interface and are required only when

applications are composed with AVSI.

Once a knowledge base is validated, the application specialist has a library of compo-

nents with known properties that he can use to create applications. The domain knowledge

that is encapsulated in the domain objects is reused each time a new application is com-

posed.

The reuse of knowledge is new to software engineering, but it is a fundamental

concept in other engineering disciplines. Traditional engineering disciplines use models

to capture knowledge about a domain. When a new project is undertaken, engineers

use the models to assist in the design process. The models are instantiated with design

parameters and the resulting behavior analyzed. Parameters can be adjusted until desired

behavior is attained. If no suitable models exist, new ones are developed and added to

the knowledge base, creating a growing body of knowledge. Without libraries of reusable

software components to draw upon, new software must be created ad-hoc for each project.

This results in costly, error-ridden software that does not meet user needs. Model-based

software development is an attempt to apply traditional engineering practices to software

to put fnginerring into software engineering (5).
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1.2 Problem Description

Prior to this research, the only technology base available for Architect was a set

of 12 logic circuit primitives. At the time this technology base was developed, Architect

had no executive. Instead, a rudimentary execution capability was provided that required

the application specialist to specify a fixed sequence of execution for primitives in the

application. The logic circuits domain provided insight into some of the limitations of

Architect. The fixed sequence of execution restricted the types of primitive behaviors that

could be modeled and limited the complexity of applications that could be composed.

Specifically. time-dependent primitive behavior and compositions with feedback were be-

yond Architect's capabilities. More experience with new and diverse domains was needed

to determine the requirements for a composition system that supports a broad spectrum

of domains.

Problem Statement: To demonstrate the feasibility of composing time-dependent

specifications using the OCU/Architect architecture; to extend the Architect technology

base by developing two diverse domain models for time-dependent domains.

1.3 Scope

This research focuses on developing domain models for two diverse time-dependent

domains. The first domain is an extension of the original logic circuits domain, which is

not time-dependent. The second domain involves a moving vehicle, specifically, a cruise

missile.

1.4 Approach

The following steps were taken to accomplish the objectives of this research:

1. The first step was to gain an understanding of domain analysis. Several articles in

the literature discuss domain analysis from a reuse viewpoint, and a few suggest

methodologies for performing domain analysis. Being a rather new field of study, the

requirements of domain analysis are still being defined; consequently, its processes are

still evolving. A process developed by Tracz. Coglianese, and Young at IBM Federal

3



Sector Company for use on domain-specific software architectures (23) contained

several features applicable to this research and was selected to be used as a guide for

the domain analyses performed in this research.

2. The next step was to perform a domain analysis on the time-dependent logic circuits

domain using the techniques expounded in Tracz' process. A small but representative

set of logic circuits was selected and an object-oriented analysis (OOA) was performed

to determine the significant properties and behaviors of each device. From these mod-

els, architectural constraints and executive requirements were identified that required

modifications to the existing software architecture in Architect. The architectural

modifications and executive development were performed by other researchers (6)

(25). The new circuits were then implemented in Refine code and tested. Finally,

sample applications were composed and tested to verify proper interaction of the

components.

3. Next, a domain analysis was performed on the cruise missile domain using Tracz'

methodology. The steps involved essentially paralleled those described for the circuits

domain except that no new architectural requirements were identified.

1..5 Sequence of Presentation

The next chapter reviews the current literature applicable to this thesis. Chapter III

discusses the domain analysis of the time-dependent logic circuits domain and presents the

results. Chapter IV discusses the domain analysis of the cruise missile domain. Chapter
V presents conclusions about this research effort and makes recommendations for further

research in this area.
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II. Literature Review

2.1 Introduction

The primary objective of the literature review was to examine current research in the

area of domain analysis to support development of the two domain models. Other systems

similar to Architect and relevant software architectures were also examined.

2.2 Domain Analysis

Prieto-Diaz defines domain analysis as "a process by which information used in devel-

oping software systems is identified, captured, and organized with the purpose of making

it reusable when creating new systems" (16:47). The process' output is a domain model

which describes the objects, operations and relationships common to all systems in the do-

main. He notes that domain analysis efforts are more likely to produce quality results when

several ad-hoc applications have previously been developed in the domain. The ad-hoc ap-

plications contribute to the understanding of the domain. When the domain is sufficiently

well understood, its salient features can be abstracted and codified into a domain model. In

Prieto-Diaz' view, the domain model is a domain-specific language containing the syntax

and semantic rules that represent all objects and operations in the domain. Don Batory

describes a domain model as "a theory of how software systems of a domain can be con-

structed from prefabricated components" (2). Domain modeling, therefore, is the process

of identifying those domain components and determining their attributes, functions, and

relationships.

In 1987, Prieto-Dfaz called domain analysis a "knowledge intensive activity for which

no methodology or any kind of formalization is yet available (17:63)". He saw prior domain

analysis attempts as being product-oriented rather than process-oriented. In order to help

formalize the domain analysis process, he proposed a methodology consisting of eight steps.

The first three steps are precursors to the actual analysis and provide the framework in

which the analysis will be performed. The final two steps, performed after domain analysis

is completed, relate to implementation and reuse.

5
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1. Define and scope the domain - determine the boundary of the domain to limit the
type and quantity of information to be analyzed.

2. Identify sources of knowledge and information about the domain - locate domain
expertise and documentation about existing systems

3. Define the approach - establish guidelines for extracting relevant knowledge from the
domain expert and and from existing systems.

4. Identification of objects and operations - determine common characteristics of similar
systems in the domain and generalize into a set of objects and operations on the
objects.

5. Abstraction - determine the relationships between objects.

6. Classification - group objects sharing common attributes or properties to create a
taxonomy of the domain; create a DSL that an be used to describe the objects and
operations in the domain.

7. Encapsulation - make selected components reusable through modularization, struc-
tured design, and standardization of interfaces.

8. Produce reusability guidelines - develop documentation for reusers.

Tracz, Coglianese, and Young, working on domain-specific software architectures

(DSSA), believed that existing domain analysis processes focused too much on the the so-

lution space instead of the problem space because they fail to distinguish types of require-

ments. Tracz' approach to domain analysis differentiates requirements as either functional

requirements or implementation constraints where the former define the problem space and

the latter characterize the solution space. They developed a five stage domain engineering

process to "map user need into system and software requirements that, based on a set of

implementation constraints, define a DSSA"(23:1).

Each of the five stages of their process consists of a series of substages. The stages

define a "concurrent, recursive, and iterative" process; therefore, each stage may be revis-

ited several times as the domain model develops in order to correct oversights, incorporate

new requirements, or add refinements (23:2). The stages of the process are outlined below:

I. Define the scope of the domain. The purpose of this stage is to bound the domain of

interest and to determine the goals with primary emphasis on determining/meeting

the user's needs. Consultations with domain experts, reviews of relevant research

or documentation, and analysis of existing systems support this effort. The main

6



outputs of this stage are a high-level block diagram of the domain and a list of users'

needs.

2. Define/refine domain-specific concepts/requirements. Using the products of the pre-

vious stage as inputs, this stage identifies the entities (objects) in the domain along

with their attributes, data flows, control flows, and relationships to other domain

entities. Entities are classified and common entities are grouped. A dictionary with

domain-specific terminology and a high-level requirements specification are devel-

oped. The primary output is an object-oriented analysis of the domain.

3. Define/refine domain-specific design and implementation constraints. The objective

of this stage is to identify the constraints imposed upon the architecture by the

performance requirements of applications in the domain. Constraints such as "how

fast", "how often", and "how big" are identified and their impact on the design and

implementation is determined.

4. Develop domain architectures/models. The goal of this stage is to determine the

generic architectures needed to implement the range of applications in the domain.

Hierarchical decomposition of applications into subsystems, lower level subsystems,

and leaf modules is performed. Subsystem or module requirements such as concurrent

versus sequential execution and massively parallel versus single processor host envi-

ronments will drive a need for multiple architectures to support domain applications.

This stage also produces the syntactic and semantic rules for composing objects. The

main outputs from this stage are the architectures with component interfaces, and

mappings between the subsystem/modules and the Stage 2 requirements.

5. Produce/gather reusable workproducts. In this last stage, the domain objects are

implemented (coded) as reusable components that can be composed to create new

domain applications. Commercial off-the-shelf (COTS) and existing in-house compo-

nents are evaluated for suitability and modified if practical. Otherwise, new compo-

nents are developed. The outputs of this stage are the reusable components, their test

cases, and the documentation needed to use the components. Output also includes

a cross reference of functional requirements and constraints to specific components.

7



Tracz' domain engineering process provided the framework for the domain analyses

performed in this research.

2.3 Software Architectures

The software architecture provides the infrastructure that allows domain objects to

be composed into applications. It enforces domain-independent syntax and semantics rules

about how objects can be connected and provides the structural form of the application,

e.g., how the domain objects are grouped into subsystems. The software architecture also

provides the mechanisms whereby objects communicate with other objects or subsystems

and provides the interface to the application executive.

2.3.1 VHDL. VHDL is a hardware description language used to describe digital

hardware devices. A VHDL description of a device involves a behavioral model, a timing

model, and a structural model. The behavioral model views devices as having a set of pro-

cesses which transform their inputs into outputs. All processes in the model are considered

to be concurrent.

VHDL has a two-stage model of time based upon a stimulus-response paradigm as

depicted in Figure 2.3.1. During the first stage, signals are propagated to the devices' inputs

(the stimulus). During the second stage, device processes are executed to update output

values (the response) (14). VHDL entities only respond to inputs they are "sensitive" to as

defined by sensitivity channels (14:10). Thus a docked device might be defined to only be

sensitive tu transitions on its dock input. A transition on the device's clock input would

cause the device's process(es) to be executed, but transitions on other inputs would not.

The temporal behavior of VHDL devices is modeled by three types of delays (14:75-

82), (14:13):

1. Transport delay - Time from wihen a process calculates a new output value until
the new value is made available to other devices. Analogous to propagation delay
through a device or wire.

2. Inertial delay - Amount of time a signal must be stable before being considered valid.
Used to simulate rejection of noise or transients on an input line.

8
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Update Signals EXecute Proceas

End Sima

Figure 1. VHDL Model of Time

3. Delta delay - The zero time delay between stages of the simulation cycle. Data
calculated by a process is not available to other devices until the start of the next
simulation cycle. Used when no transport delay is given; does not cause simulation
clock to change.

The structural model describes how devices are grouped into new units called sub-

systems.

2.3.2 OCU. The Object Connection Update (OCU) model is a software archi-

tecture developed by the Software Engineering Institute (SEI) (11). The main element

in the OCU model is the subsystem. An OCU subsystem consists of an import area, an

export area, and a controller. The controller controls one or more controllees which may

be objects or other subsystems. All data inputs required by the subsystem can be found in

the import area. Similarly, all subsystem outputs required by other objects or subsystems

are placed in the export area. An important aspect of the OCU model is anonymity. Ob-

jects have no knowledge of other objects or of subsystems Subsystems know only about

their controllees, and have no knowledge of other subsystems (11). In the SEI concept,

subsystems are the "locus of the mission" while objects are the "services to carry out the

mission"(1l:18). Figure 2 depicts a subsystem in the OCU architecture. Two other el-

ements in the OCU model are the executive and surrogates. The executive controls the

top-level subsystems; the surrogates provide I/O services to/from the host environment.

Each subsystem has a common set of functions which are called to invoke particular

actions. These functions are listed below:

9



Figure 2. Object Connection Update (OCU) Model

* Update - Causes the controller to update the state of the subsystem based upon
current state and data in the import area; state data needed externally is written to
the export area. Subsystems have no explicit state; it is derived from the aggregation
of its controllees' states; consequently, subsystems have no attributes.

* Stabilize - Causes the subsystem to reach a state of equilibrium consistent with its
import data and current state.

* Initialize - Creates objects (controllees) and sets their initial states.

* Configure - Maps controllee inputs to the import area and controllee outputs to the
export area. Defines how the subsystem is "connected" internally and externally.

* Destroy - Deallocates objects created during initialization.

Similarly. there is a common set of functions for each object:

"* Update - Causes the object to calculate a new state based upon its inputs and current
state.

"* SetState - Used to change an object's state directly.

"* Create - Instantiates a new object.

"* SetFunction - Alters the algorithm used by the Update function.

"* Destroy - Deallocates the object.

Objects can have the following types of attributes:

" Constants - Attributes whose values may not be changed; the OCU model does not
specify whether these are absolute constants such as r or configurable constants
whose values do not change during execution.

"* Coefficients - Attributes used in the update function

"* State Variables - Attributes that determine the state of the object

10



2.3.3 Architect. Architect is based on the OCU model. Existing applications

in Architect execute in a non-event-driven sequential mode. Each subsystem contains an

update algorithm that determines the order in which the subsystem's objects are updated.

The update algorithm is designed to use IF-THEN-ELSE statements and WHILE loops to

control the sequencing of object updates; however, not all required functionality has been

implemented to take advantage of these conditional constructs.

SW- I _ _

sw- 2

Figure 3. A Sequentially Executing Application in Architect

Figure 3 shows a simple application containing two switches (SW-i and SW-2), an

and-gate (AND-i), and a Light Emitting Diode (LED-i). The update algorithm for a

subsystem containing these objects would be:

"* update SW-i

"• update SW-2

"* update AND-i

"* update LED-i

Prior to being updated, there is no data in the objects' output areas. The application

specialist must select the sequence in such a way that no object is updated before all other

objects providing its input data are updated. In this example, the order of the switch

updates could be reversed, but any other sequence would be erroneous. Applications

constructed this way do not allow feedback since feedback would require the availability

of data that has not yet been generated.

Create and destroy are implemented in Architect as static operations. OCU elements

are created during the composition process and exist as persistent objects in the Refine

object base; they are deleted after execution through an erase function. Dynamic alloca-

tion and deallocation are possible in Refine but no attempt has been made to incorporate

II



them into Architect. The current technology bases have no requirement for dynamic al-

location/deallocation, but this could change when more complex domains are added to

the technology base. The main impediment is not creating and destroying the objects,

but rather dynamically configuring the objects' connections and modifying the controllers'

update algorithms. Dynamic allocation/deallocation is not investigated as part of this re-

search. Architect has a domain-independent SetState function that can be used to modify

object attributes directly in the object base. The function has not been implemented as a

domain object function.

2.4 Simulations

2.4.1 Discrete versus Continuous Systems. A system can be classified as discrete

or continuous according to the way system state changes with respect to time. System state

is determined by the values of all the state variables in the system. A discrete system is one

in which all state variables have discrete values. The state of a discrete system changes

in finite jumps or quanta according to the discrete values of its state variables. State

transitions are caused by stimuli called events. Events are associated with an instantaneous

point in time and have no duration. A discrete system can be modeled as a finite state

machine. A continuous system has state variables that can take on a continuous range of

values. The state of a continuous system is characterized by smooth, continuous changes.

Continuous systems are often represented by sets of differential equations that specify the

system's behavior. A hybrid system is one that has both discrete and continuous variables

(7:3).

Consider a system consisting of cars passing through a busy intersection during rush

hour. The number of cars waiting at any time for the traffic light to change is an example

of a discrete variable since it can only take on integral values. In contrast, the average

speed of the vehicles passing through the intersection is a continuous variable since speed

can take on a continuous range of values. If the speed need only be known to the nearest

mile per hour, then it could also be modeled as a discrete variable.

Continuous variables cannot be measured or represented with infinite precision. The

resolution of the measuring device limits how accurately the variable can be measured, and
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the number of bits used by the computer to store the variable's value limits the precision

to which the value can be represented. A continuous variable is ultimately represented

as a discrete variable due to one of these limiting factors. Discrete variables can also be

modeled as continuous variables with a sufficiently fine granularity of representation, such

as using a fixed point number to represent an integer value. The choice to model systems

as discrete or continuous is one of practicality. The logic circuits domain is more easily

modeled as discrete; the cruise missile domain is more easily modeled as continuous.

2.4.2 Event-Driven and Time-Driven Simulations. An important characteristic

of simulations is the way in which the advancement of time is handled. In an event-

driven simulation, events are raised asynchronously by components in the simulation. As

the events are processed, the simulation clock is updated so that its time is the same

as the time of the event currently being processed. The clock is, therefore, driven by

the execution of the simulation model. In a time-driven (or time-stepping) simulation, the

executive advances the clock in uniform increments. At each increment, model components

are given the opportunity to execute. The model components respond to changes in the

clock but do not raise new events. After each component has been given the opportunity

to execute, the executive increments the clock and repeats the process.

2.5 Conclusion

The current literature provides no definitive approach to domain analysis; the pro-

cesses which produce successful domain models are still evolving. Prieto-Diaz, and Tracz

have identified processes that a domain analyst can use as guides. Although none of these

processes can be considered algorithmic, they did prove useful to the domain analyses

for this research. In addition, VHDL provided valuable insight into the requirements for

implementing the time-dependent logic circuits domain objects and their interaction with

the architecture and executive.
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III. Domain Analysis of the Time-Dependent Logic Circuits Domain

3.1 Introduction

This chapter discusses the domain analysis performed on the time-dependent logic

circuits domain in the context of Tracz' domain engineering process. The chapter is orga-

nized around the five stages of the process.

3.2 Stage 1: Defining the Scope of the Domain

Defining the scope of the domain is the first stage in Tracz' process. According to

Tracz, the emphasis in this stage should be to accurately define the users' needs (23:2).

The main outputs of this stage are a list of user needs and a block diagram of the domain

showing inputs, outputs, and high-level relationships.

3.2.1 Logic Circuits Domain. The realm of logic circuits is very broad. At the

lower end of the spectrum are the small-scale integration (SSI) devices, containing up to

about 12 gates. Slightly more complex devices containing up to 100 gates are classified

as medium-scale integration (MSI). Counters, shift-registers, and decoders are typical de-

vices in this category. Large-scale integration (LSI) devices, containing up to 1000 gates,

are used to implement more complex devices such as small memories or programmable

logic arrays. At the upper end of the spectrum are the very-large-scale integration (VLSI)

devices which may contain several hundred thousand gates. Large memories and CPUs

are examples of VLSI devices (15:169, 297). Within a category, there may be families of

devices with similar properties. For example, transistor-transistor-logic (TTL), emitter-

coupled-logic (ECL), and complementary-metal-oxide-semiconductor (CMOS) are common

families within the SS1 and MSI technologies. Each family has characteristic speed, power

dissipation, threshold voltages (input voltages representing logic levels), fan-out (the max-

imum number of inputs that an output can drive), etc. Devices within the same family

have compatible inputs and outputs; thus, they can be composed together directly. Devices

from different families generally require interface support to make their inputs and outputs

compatible. Almost all devices operate on binary input data with two discrete logic levels

represented by high/low, true/false, asserted/negated, or one/zero. Many devices have a
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tri-state output that can either be at one of the two logic levels or in a high-impedance

state which effectively "disconnects" the output from other devices. The tri-state output

makes it possible to connect the output and other similar outputs to a common bus and

to only ailow one device at a time to have control of the bus (8:297).

3.2.2 The Domain of Interest. The domain of logic circuits is quite different

from the domain of avionics software for which Tracz' process was developed. Tracz was

interested in identifying the components within a given set of applications, whereas the logic

circuits primitives are fundamental components that can be composed into an unlimited

number of different applications and higher-level components. A second difference is that

the objects in the domain had already been defined for the most part. The objective was

to modify those components to execute in a different mode.

The existing logic circuits domain defined by Randour and Anderson consisted of

10 logic devices and 2 input/output (1/O) devices. The logic devices represent SSI and

.%SI components from a single family: they can be composed directly without interface

support; thus, their input and output values can be expressed as simple boolean values.

None of the devices have tri-state outputs. A brief description of the existing devices is

given below, and a more complete discussion can be found in (1).

I. 2-input AND gate: The gate's output is the logical AND of its two inputs.

2. 2-input NAND gate: The gate's output is the logical NAND of its two inputs.

3. 2-input OR gate: The gate's output is the logical OR of its two inputs.

4. 2-input NOR gate: The gate's output is the logical NOR of its two inputs.

5. NOT gate: The gate's output is the complement of its input.

6. 2.bit COUNTER: The counter is incremented whenever its input is true. When the
count exceeds a user-specified maximum value (from one to three), the counter resets
to zero. The counter can also be reset to zero by asserting its reset line. Two outputs
represent a binary expression of the count.

7. 3-to-8 DECODER: Exactly one of eight outputs, as determined by the values on the
three select lines, is set to true. The truth table for this device is given in Table 1.

8. 4-input MULTIPLEXER: The output is the value of one of the four inputs; the
particular input is determined by the values on two select lines. The truth table is
depicted in Table 2.

9. JK FLIP-FLOP: A docked device whose output is determined by its present state
and the values on the two (J & K) inputs. The truth table is shown in Table 3
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Table 1. Truth Table - 3--to-8 Line Decoder
XIY I ZIM 0Iml I M2 I M3 I M( I ,1m6 7
0 0 0 1 0 0 0 0 0 0 0u
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0
I1-1 1 0 0 10 0 0 0 0 10

Table 2. Truth Table - 4-Input Multiplexer
Iil~oI1~ outputIsIso ,o6ý

0 1 1,
1 0 12

10. HALF-ADDER: The SUM and CARRY outputs reflect the result of a binary addition
of two boolean inputs. The truth table is shown in Table 4.

1 1. SWITCH: "'hen the switch is "ON", the output is true; when the switch is "OFF",
the ouput is false.

12. LED: The light emitting diode outputs a message of "ON" or "OFF" to the console
when its input is true or false, respectively.

,13.2-S Block Diagram. It is the nature of simple logic circuits that the output

of aiiy device can be an input to any other device. Therefore, no special relationships

rxist between devices, Since all devices have boolean inputs and outputs, the domain is

closeRd and does not require external inputs and outputs. Because of these factors, a block

diagram of this domain was not required.

3_!.- 4User N eeds. The primary users of a technology base such as this are appli-

cation specialists designing circuits with domain-oriented application composition systems

similar to Architect. The application specialist needs a set of objects whose behavior

is predictable and consistent with their real world hardware counterparts. The objects

must be modeled with sufficient detail to capture the behaviors that are important to the

application specialist. The objects' parameters should be configurable so that a single
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Table 3. Truth Table - JK FLIP-FLOP

clck J IIi NewQ I New•
0 x x old Q - (oldQ)

S0 0 old Q ~ (oldQ )
1 0 1 0 1

1 10 1 0
1 1 1 -(oldQ) old Q

Table 4. Truth Table - HalfAdder

[X I Y Sum 1 Carry[
00 0 0 0
0111 1 0
1 0l 1 I0
1 1 0 1

object can be instantiated with a range of behaviors. Objects in the domain should have

compatible inputs and outputs so they can be readily composed into applications. When

the applications are composed in a graphical environment, iconic representations of the

objects are also needed. Icons should be consistent with conventional symbologies used to

represent the objects. Cossentine discusses visualization requirenm, iib for domain-oriented

application composition systems in (4).

As Architect is in the proof of concert phase, a secondary set of users of this tech-

nology base are the other researchers who are developing the application executive and

modifying the architectural model (25) (6). Both require objects to test and validate their

work. The event-driven logic circuits domain, therefore, needs a variety of objects with a

range of behaviors sufficient to exercise the event-driven functionality being developed for

Architect. An initial assumption was that the 12 devices in the existing technology base

would be sufficient for this research.

3.3 Stage 2: Define/refine domain-specific concepts/requirements

The main product of Tracz' second stage is an object-oriented analysis of the domain

"with special emphasis on 'identifying commonalities' and 'isolating differences' between
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applications in the domain" (23:4). The goal in this stage was to identify the domain

objects and their attributes, functions, control flows, data flows, and relationships.

3.3.1 Object Model. Normally, the first step would be to develop an object

model showing the domain objects and relationships. For the circuits domain, such an

object model would be uninformative since the domain objects are already known and

the objects have no relationships until composed into an application. Instead, an object

model showing the relationships between an arbitrary (domain-independent) event-driven

domain and the Architect/OCU architecture was developed. This model, developed in

close coordination with Welgan (25) and Gool (6), helped determine the concepts and

requirements needed to implement the new domain. The techniques of Rumbaugh, as

explained in (21), were used to create the model.

Figure 4 shows that an application consists of one or more composition units and

an executive. Composition units (an abstract class) connect to other composition units

and can either be objects or subsystems; subsystems are in turn composed of one or more

objects. Subsystems also contain an import area and an export area. These parts of the

diagram describe the general OCU model. In order to execute in the event-driven mode, the

executive needs to maintain a list of events. It also needs a clock to keep track of the passage

of time so the time-dependent primitives can execute at the proper time. Welgan designed

the executive as a specialized OCU subsystem that both manages and responds to events.

Seven different event types were identified to control the execution of an application. The

Start and Stop events control the beginning and ending times of execution. The Transmit

and Receive events are used to control the exchange of data between top-level subsystems

(25). These four event types are ezecutive events. The remaining three events, Update,

Set-State. and Remove, are application events. The distinction between application and

executive events is somewhat artificial since the executive, as a subsystem with objects,

is controlled by events just as the domain application subsystems are. Events are sent to

and collected from the In-Event and Out-Event areas of the top-level subsystems by the

executive.
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3.3.2 Concept of Operation. The object model defined the relationships between

the OCU/Architect architecture and the domain objects and subsystems. The next step

was to define a concept of operation that met the following general requirements.

"* Must be compatible with the OCU model. The OCU model provides only a sparse

description of the Update and SetState functions. In describing an object's functions,

Lee tersely states that the Update function "calculates new object state data" and

the SetState function "(modifies) the objects[sic] state data directly (11:20)." Despite

this vagueness, the concept of operation should hold to the spirit of the OCU model

to the extent possible.

"* Must maintain temporal consistency of data. Objects should not update their export

data until the time the data is valid; consumers should never have access to data that

is not yet valid. This requires objects to maintain consistency between their internal

state and the external expression of that state. Failure to meet this requirement will

cause erroneous execution or require the executive to be able to detect and handle

rollback conditions.

"* Should not be overly complex. The existing implementation of Architect is elegant in

its simplicity. Major architectural changes should be avoided if possible.

Figure 5 shows a simplified functional model of an arbitrary domain object and its

interfaces to the architecture/executive. In accordance with the OCU model, the domain

object, contained in the dotted lines, has Update and SetState functions and a set of

Attributes. When an object is updated, it invokes the architecture function get-import to

get its new input data. Using this input data and its internal state data and coefficients,

the object calculates a new state. In the existing Architect implementation, the next step

would be to invoke the set-exports function to directly update the object's export data.

With the incorporation of delays, a different approach is required.

The Update function determines the delay associated with the new state and invokes

the generate set-state events to create a set-state event for itself at the proper relative time.

Objects do not know about absolute time, only offsets from the current time. The set-state

event is then passed to the executive for insertion into the event list. After the delay time
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Figure 5. Simplified Functional Model

has expired and the set-state event is processed by the executive, the set-state event is sent

to the object's SetState function. The SetState function updates the object's internal state

and invokes the set-exports function to update its external state. The SetState function

can also cause new set-state events to be created if the particular object requires it.

The set-exports function is also involved in implementing the stimulus-response

paradigm. When the set-exports function updates an export value, it determines which

objects consume tf a• •'xport data and invokes the generate update events function to cre-

ate Update events foi zhose consumers. These Update events are sent to the executive for

insertion into the event list.

When the executive processes an Update or SetState event, it determines which

top-level subsystem the intended object is located in. It then places the event in that
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top-level subsystem's In-Event area and invokes the subsystem's Update function. When

the top-level subsystem is updated, it retrieves the new event from its In-Event area and

determines if the event is for one of its own objects. If not, it places the event in the In-

Event area of its appropriate subordinate subsystem and invokes subordinate subsystem's

Update function. The event is passed down the subsystem tree in this way until it reaches

the parent subsystem of the event's intended object.

The parent subsystem then invokes either the object's Update function or its SetState

function, depending upon the event type. The object's function may return new events.

The returned events are passed back up the subsystem tree to the top-level subsystem and

on to the executive where they are inserted into the pending event list.

3.3.3 Stale Events. The Remove event is used by objects to notify the executive

to delete some previously scheduled event from its list of pending events. In event-driven

simulations, an event scheduled for some future time can become "stale" if a subsequent

event occurs that cancels or otherwise invalidates the originally scheduled event. For exam-

ple, consider a billiards simulation in which two balls, BI and B2, axe headed on collision

courses. Assume a "collision event" between the two balls is scheduled for the appropriate

future time and location based upon distances, relative velocities, rolling resistance, and

any other modeled parameters. Now suppose that before that collision occurs, a third ball,

B3, impacts B2 and deflects B2 from its course. The previously scheduled collision is now

obsolete because B1 and B2 will no longer collide.

In order to execute properly, an application must be able to detect stale events.

Stale events can either be detected by the executive or by the domain primitives. Welgan's

executive requires the application to tell it when an event needs to be removed (25). A more

sophisticated executive might be able to figure out when events have become obsolete and

delete them without assistance from the application. This ability would require domain

knowledge that a general purpose (domain-independent) executive would not have.

One way to ensure that invalid events axe not processed is to give the primitive the

knowledge required to know whether or not to process an event that it receives. When the

object detects that an event is stale, it simply ignores it. The executive does not become
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involved. A second approach is to generate a Remove-Event whenever the Update function

detects a condition that makes a previously scheduled event obsolete.

3.3.4 Dynamic Models. The next step in Rumbaugh's OOA process is to deter-

mine the state models of the domain objects. Figure 6 shows the general dynamic model

for the gates, multiplexer, decoder, and half-adder. These objects have no internal state

variables; their outputs depend only on the inputs. These objects have a common dynamic

behavior and so were combined into a single diagram.

delay expires

Figure 6. General Dynamic Model for Objects Without Internal State

The idle state is a steady-state condition where a device's inputs and ouputs are

consistent. When one or more input signals change value, the inputs and outputs become

temporarily inconsistent due to propagation delay. During the delay period, the device is

in transition. Upon expiration of the delay, the outputs change to reflect the new inputs

and the device again becomes idle. Devices with multiple outputs can have unique delay

times for each output. If more than one output changes as a result of a change of inputs,

then the device would remain in transition until the end of the longest delay time of the

outputs that change. Under the concept of operation, a device is in transition if there is a

pending endogenous set-state event for the device. When all pending set-state events have

been processed, the device returns to idle.

Figure 7 and Figure 8 show the state diagrams for the counter and switch, two

devices having internal state variables. The switch has one binary state variable, position,
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Figure 8. Dynamic Model for the Switch Object

which can be on or off. The existence of a pending set-state event serves as a second

pseudo-variable which gives the switch its four states.

Figure 9 shows the state and transition diagrams for the JK-Flip-Flop. Note that

the transition diagram differs from that shown for the sequentially executing flip-flop in

Figure 3 because this event-driven flip-flop is positive edge-triggered. In addition to prop-

agation delay, the jk-flip-flop also has setup and hold delays. Set-up and hold delays are

examples of the VHDL inertial delay. Set-up delay defines the length of time that inputs

must remain stable before the clock pulse arrives. Hold delay defines the length of time the

inputs must remain stable after the clock pulse arrives. The jk-flip-flop has three states:

ready, setting-up, and in-transition.
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Figure 9. Dynamic Model for the JK-Flip-Flop Object

Ready is a stable state where the device is in equilibrium, i.e., there are no endogenous

set-state events pending. When ready, a change in the J or K inputs moves the the flip-

flop to the setting-up state. When the setup delay expires, the flip-flop re-enters the

ready state. Alternately, from the ready state, a false-to-true transition on the clock input

causes the flip-flop to enter the in-transition state. In-transition is a superstate consisting

of holding and committed substates. Recall that in-transition indicates there is a pending

set-state event to change the device's output. If no changes occur on the J or K inputs

before the hold delay expires, the set-state event is honored and the output changes after

the propagation delay time. If a change occurs on a J or K input prior to the hold delay

expiration, the set-state event to change output is not honored and the flip-flop goes to the

setting-up state. This requires the device to be able to detect and handle obsolete events.

Analysis of these state diagrams revealed that all the objects have bistable outputs;

whether high or low, their outputs do not change in the absence of external stimuli. There

is a latency from the time the stimulus arrives until the output changes, but once the output

changes, it is stable. Other devices have different properties. A monostable multivibrator,
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or one-shot, is only stable when its output is low. When its outpu is set high, its new state

is transient; it will automatically revert low after a given delay. An astable multivibrator,

or clock, has no stable output; it continually alternates between low and high at a periodic

rate. In order to examine how transient and periodic behaviors affect design, a one-shot

and a clock were added to the domain. The clock will also provide the means to create

continuously running applications. In the absence of feedback connections, applications

built with the other primitives terminate after a finite number of events have occurred

and the primitives are left in a final state. Also, the dock is a fundamental building block

that will be needed when more complex LSI and VLSI type components are developed

for Architect. The dynamic models of the two new devices are shown in Figure 10 and

Figure 11. Rescoping the domain is an example of the iterative nature of Tracz' process;

as new requirements are identified, any or all stages may need to be revisited.

3.3.5 Functional Models. The next step in the OOA process is to generate

functional models (data flow diagrams) of the domain objects. However, the functionality

of the logic circuits devices was too simplistic to warrant development of functional models.

3.4 Stage 3: Define/refine domain-specific design and implementation constraints

This stage identifies constraints on the software architecture imposed by the require-

ments of domain applications. Architect has no performance requirements, since it is not

intended to be a simulation or operational system. Correctness of specified behavior is
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Figure 11. Dynamic Model for the Clock Object

what is important, not how fast or efficiently it executes. Since it is a goal of this research

to retain compatibility with the OCU model, this stage of the process should identify

domain-independent requirements that cannot be met with the existing Architect/OCU

architecture and executive. Many of these requirements were identified previously when the

object model and concept of operation were developed. In order to support event-driven,

time-dependent domains, the folloi 'jig changes to Architect are needed.

1. The architecture must be modified to incorporate events.

2. The domain-independent SetState function must be relocated to the object level.

3. The architecture must support the stimulus-response paradigm.

4. The architecture must provide a means to invoke domain-specific semantic checks.

5. An event-driven executive with a clock is required.

6. The architecture must provide for establishing an initial condition prior to execution.

3.5 Stage 4: Develop domain architectures/models

The goal of this stage was to determine the architecture needed to support applica-

tions in this domain. The new architectural requirements identified in the previous stage

were conveyed to Gool for implementation. Gool extended the OCU model by adding

In-Event and Out-Event areas to the subsystems. A diagram of the new OCU subsystem

model is shown in Figure 12.

A complete description of the architectural modifications can be found in (6). Be-

cause Architect's architecture is domain-independent, this stage also needs to identify
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4

Figure 12. Modified OCU Subsystem with Events

domain knowledge that must be made resident in the domain objects rather than in the

DSSA. Sensitivity and domain-specific semantic checks are two types of domain knowledge

that normally would be allocated to the DSSA.

3.5.1 Sensitivity. Knowing whether or not to respond to an input signal is device-

dependent (and, therefore, domain-dependent) knowledge. In VHDL, objects (entities)

only respond to inputs that are listed in their sensitivity list. If a signal arrives on an

input listed in the sensitivity list, the appropriate process (function) with the object will

be invoked. If the input is not on the list, the input arrival is ignored. VHDL is only a

design language, not an implementation of a simulation system; no assumptions can be

made about how the language constructs might actually be implemented. Conceptually,

however, the decision on whether or not to invoke an object's process is made outside

the object. Any decision made outside the domain object requires some architectural

involvement. If a property is common to all domains, then it is domain-independent,

and special architectural support might be justified. Since this was the first event-driven

domain developed for Architect, the experience base was not broad enough to determine

if sensitivity was a property specific to the domain of digital logic circuits or if it was

a domain-independent characteristic. Therefore, it was decided to take the conservative
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approach and embed the sensitivity knowledge inside the domain objects. Under the

concept of operation, objects are updated whenever any input changes value. Objects

with sensitivity then need to keep track of the last state of their sensitive inputs so they

can determine when changes occur on those inputs.

3.5.2 Domain-Specific Semantic Checks. This section begins with a discussion

of how Architect performs syntax and semantic checks on composed applications. It then

discusses how domain-specific semantic checks were incorporated into Architect.

3.5.3 Architectural Syntax and Semantic Checks.

3.5.3.1 Architectural Syntax Checks. Architect enforces the following syn-

tax rules on how components can be connected:

"* only input-to-output or output-to-input connections can be made.

"* the categories of a connected input and output must be the same.

"* the data types of a connected input and output must be the same.

In the logic circuits domain of Randour and Anderson, all inputs and outputs are of

category signal and data type boolean. Thus any output can be connected to any input.

This implementation was satisfactory for this part of the research.

3.5.3.2 Architectural Semantic-Checks. Architect also performs semantic

checks on the composed application to ensure that the OCU structure is correct. Architect's

syntactical and semantic checks allow broad freedom to compose components in many ways.

A domain, however, may have its own set of semantic rules that limit the legal compositions

to a subset of those allowed by Architect. For example, Architect allows any output to be

connected to as many different inputs as the application specialist selects. This may not

be realistic in some domains. The output of a logic circuit can only drive a limited number

of inputs and still maintain its logic threshold level. The actual number, the fan-out, is

device-dependent (and therefore, domain-dependent). Another domain may require certain

components be used together; for instance, in domain X, all legal applications containing

component A must also contain component B. Prior to this research, Architect had no

provisions for domain-specific semantic checks.
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3.5.4 Implementation of Domain-Specific Semantic Checks. A software architec-

ture composition tool needs a standard interface to the technology base to determine if

domain-specific semantic checks exist. If semantic checks exist, the composition tool then

needs to know how to invoke them. The following approach was taken in this research.

In the domain model for each domain, a variable called <domain-name>-semantic-

checks is declared where domain-name is the actual name of the domain. If domain-specific

semantic checks exist for this domain, the value assigned to the variable is the name of the

function that needs to be invoked to perform the checks. If no domain-specific semantic

checks have been identified, the value of the variable is left as UNDEFINED. In the circuits

domain, this variable is declared as:

var circuits-semantic-checks : symbol = 'CIRCUITS- SEMANTIC-CHECKS

After the architectural semantic checks are completed, the domain-specific checks are

invoked using the lisp funcall function and the global variable *CURRENT-DOMAIN*.

The reason for not using a fixed variable name like "domain-semantic-checks" is to ac-

commodate future applications containing objects from multiple domains in which case

domain-specific semantic checks from each domain may need to be invoked.

The domain-specific semantic checks for the circuits domain consist of counting the

number of inputs connected to the outputs of each device having a defined fan-out limit.

If no object has connections exceeding its fan-out, the semantic checks pass; otherwise, it

fails and gives an appropriate error message.

.3.6 Stage 5: Produce/gather reusable workproducts

In this stage, the design was mapped into Architect. The previously identified domain

objects were implemented as reusable components using Architect's native language, Re-

fine. The 12 existing circuits domain objects were modified to execute in the event-driven

mode and the new clock and one-shot objects were developed. All of the requirements

identified for the event-driven logic circuits technology base were incorporated into the

design.
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3.6.1 Object Functions. No new functions were identified for the objects. The

existing functions in the OCU model were found to be adequate for the design. It was

necessary, however, to modify Architect's implementation of the SetState function from

domain-independent to object-specific, which is consistent with the OCU model. Int the

sequential executioi, '.ode, the SetState function is not coupled to the set-export function.

When a primitive's state attribute is changed with the SetState function, the internal

representation of its state changes, but the external representation does not change until

the next time the primitive's Update function is called. Since the sequential execution mode

requires a primitive to be updated before any other primitives depending upon its output

are updated, no inconsistencies occur. In the event-driven mode, Update functions do not

occur as conveniently, and it is necessary to enforce internal and external consistency.

Each primitive was given its own uniqjue SetState function. In the logic circuits

domain, four types of domain knowledge are contained within the SetState function.

e Knowledge of the external representation of internal state.

This knowledge is needed to ensure internal and external consistency whenever the

state of an object is modified directly. For example, setting the 2-bit counter's

internal count to three is equivalent to setting its two outputs true. Whenever the

count is changed, the outputs must be changed to reflect the new state. A domain-

independent SetState function would not have the knowledge to perform this action.
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"* Knowledge of the stimulus-response paradigm.

Objects in this domain require their Update functions to be invoked only when one

or more inputs change value. The SetState function does not "set" outputs that do

not change as a result of the new state. Thus in the case of the counter above, either

none, one, or both of the outputs might be set True depending upon the previous

count.

"* Knowledge of latent, periodic, or other time-dependent behaviors.

When the switch's position is changed, there is a delay before the effect is known

externally. The SetState function knows about this latency and schedules a transition

event for the output at the proper time. The SetState function will also schedule

transition events for primitives whose state is periodic. For example, the clock is a

free-running device; once enabled, it requires no further updates to continue running.

Whenever the SetState function sets the output, it also schedules an event to toggle

the output after the appropriate delay. SetState works similarly for the transient

behavior of the one-shot.

"* Knowledge to recognize stale events

As discussed previously, scheduled events sometimes become invalid. An event sched-

uled to set the clock's output to True, for example, can become invalid if the clock

is disabled before the event arrives. Whenever this possibility exists, the SetState

function checks the current state of the primitive before processing the event.

It should be noted that knowledge of the stimulus-response paradigm is not required

for proper execution of an application. Objects' update functions are designed so that if

an Update function is called when no inputs have changed, the result will be the same

as if the Update function had not been called. The effect of the knowledge then is not

to influence application behavior, but to reduce the system overhead by not generating

unnecessary events.

3.6.2 Object-Class Hierarchies in the Logic Circuits Domain. In a broad sense,

most components in the logic circuits domain have a similar function: they "act" upon
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their inputs and update their outputs. But two components axe fundamentally different.

The switch is unique in that it has no inputs. The switch is a SOURCE object that exists

to provide inputs to other components. Similarly, the LED is unique in that it has no

outputs. It is a SINK object used to monitor the output state of other components. These

differences suggested an object class hierarchy in which primitives belong to one of three

subclasses: ACTOR, SOURCE, or SINK as depicted in Figure 4. Further decomposition

into lower-level subclasses did not seem appropriate due to the limited number of objects

in the domain. If the domain is populated with more objects in the future, a more hierar-

chical structure may prove beneficial. For example, the ACTOR subclass could be further

decomposed into gates, counters, flip-flops, multiplexers, etc. The gates subclass could

then have subclasses defined by the number of inputs to each gate. The best hierarchy

will depend on the actual objects populating the domain and on the types of applications

being composed.

3.6.3 Domain-Specific Language. After the object class hierarchies were estab-

lished and the primitives were coded, it was necessary to develop a grammar so that

applications could be composed and parsed into Architect. Dialect, the Refine environ-

ment grammar tool, was used to create the DSL for the circuits domain. A grammar for

the original circuits domain already existed, so all that was required was to modify it to

include the two new objects and the new attributes added to other objects. An executable

application in the time-dependent domain requires three grammars:

"* Domain-specific grammar

"* Architectural (OCU) grammar

"* Executive grammar

Limitations within Dialect restrict a grammar to inherit from at most one other

grammar (19:5-20). To circumvent the limitation, the executive grammar was combined

with the OCU grammar. The DSL then inherits from the combined OCU/executive gram-

mar (25). After compiling the DSL, the next step was to test the domain objects with

simple applications. Validation of the new technology base components is discussed below.
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8.6.4 Test Methodology. The following methodology was used to validate the

new logic circuits technology base:

1. Validated SOURCE and SINK objects

2. Validated remaining objects by composing simple applications containing previously
validated objects and the object being tested. This step was repeated until all objects
were validated.

3. More complex applications were composed to test object interaction.

8.6.5 Test Results.

3.6.5.1 Validate SOURCE and SINK Objects. The first step was to test

the SOURCE and SINK objects, as these axe needed to test all the other objects. An

application with one subsystem consisting of a single switch connected to an LED was

composed. The switch was defined with initial position OFF and delay 5. Two SetState

events for the switch were placed into the executive's event-manager list - one to change

the switch position to ON at time zero and another to set it back to OFF at time 10.

The application was then parsed into Architect and executed. The sequence of application

events described below occurred:

1. The first pre-loaded SetState event is processed for the switch at t=0. The switch
changes its position to ON and returns a new SetState event for itself to change its
output to TRUE at t=t+5.

2. The new SetState event for the switch is processed at t=5. The switch changes its
output to TRUE and returns an update-event for the LED.

3. The update-event is processed for the LED at t=5. The LED updates its display
value to ON.

4. The second pre-loaded SetState event is processed for the switch at t=10. The switch
changes its position to OFF and returns a new SetState event to change its output
to FALSE at t=t+5.

5. The new SetState event is processed for the switch at t=15. The switch changes its
output to FALSE and returns an update-event for the LED.

6. The update-event for the LED is processed at t=15. The LED changes its display
value to OFF.

Additional events pertinent to the executive's function also occurred but axe not

listed here since they did not affect the actual operation of the switch and LED. The

successful completion of this test validated the behavior of the switch and LED objects.
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Figure 13. Counter Test

3.6.5.2 Validate Remaining Components. The ability to preload SetState

events for the switches into the executive's event-manager provided a simple yet effective

way to generate the input transitions needed to test the behavior of the other devices. This

was particularly useful when generating the precise sequencing of transitions needed to

test the setup and hold delays on the jk-flip-flop. The clock object, after it was validated,

provided a simpler way to generate transitions for testing other objects which did not

require the precise transitions. The application used to test the counter is depicted in

Figure 13.

3.6.5.3 Feedback Circuit. A simple oscillator application was developed to

demonstrate the ability to specify applications using feedback. The circuit diagram used for

the test is shown in Figure 14. The feedback connection creates an unstable circuit which

oscillates with a period determined by the propagation delays through the inverters. Since

the circuit does not have any switches and the inverters do not have any state variables,

set-state events cannot be used to initiate execution. Instead, an update event is used.

When the circuit is composed, there is always one object in the feedback loop where input

and output conditions are inconsistent. The update event is targeted for this object.

The test begins with the Not-1 and Not-2 inputs true, and the Not-3 input false.

LED-1 and LED-3 are ON and LED-2 is OFF. Not-1 is in an unstable condition because

its input and output are the same (both true). The application specialist inserts an Update

event for Not-1 into the event manager prior to execution. When Not-i updates, it sets its

output false. This causes Not-2 to update which in turn causes Not-3 to update. Due to
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Figure 14. Simple Oscillator

the feedback from Not-3's output to Not-l's input, the circuit will oscillate. The period of

oscillation depends upon the cumulative delays in the three gates. With the delays set to

15, 25, and 20 for Not-i, Not-2, and Not-3, respectively, the total delay through the gates

is 60. LED-1 will go OFF at t=15, LED-2 will go ON at t=40 (15+20), and LED-3 will

go OFF at t=60 (15+25+20). Afterwards, the three LEDs will change state every 60 time

units until a STOP event is processed.

Following is the actual output generated when the application was executed:

.> (ar 15)

The current simulation time is now 0

The current simulation time is now 15

LED LED-i = OFF

The current simulation time is now 40

LED LED-2 = ON

The current simulation time is now 60

LED LED-3 = OFF

The current simulation time is nov 75

LED LED-1 = ON

The current simulation time is now 100

LED LED-2 a OFF

The current simulation time is now 120

LED LED-3 = ON
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The current simulation time is now 135

LED LED-i a OFF

The current simulation time is now 160

LED LED-2 a ON

The current simulation time is now 180

LED LED-3 = OFF

The current simulation time is now 195

LED LED-1 a ON

The current simulation time is now 220

LED LED-2 - OFF

The current simulation time is now 240

LED LED-3 a ON

The current simulation time is now 250

Rule successfully applied.

3.6.5.4 Comparison of Sequential and Event-Driven Primitives. Table 5

compares the attributes in the sequential and event-driven JK-Flip-Flops, respectively.

A 'Yes' means that an attribute was both included and implemented in the primitive;

'No' means that an attribute was included in the primitive but not implemented; a -

means that the primitive did not contain the attribute. An attribute is considered to be

implemented if its value is used by one or more functions within the primitive.

Implementation of time-dependent behavior introduced many more states to the

jk-fiip-flop, requiring more state variables. The Clock-Level attribute stores the previous

values of the clock input in order to model edge-triggered docking. As the Update function

is invoked whenever any input changes, J-Level and K-Level attributes were needed to

determine if the changes occurred on the J or K inputs since changes on those inputs

affect the validity of the setup and hold delays. Each time the J or K input changes, a

'setup delay expired' event is scheduled. The JK-Changes attribute counts the number of
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Table 5. Comparison of JK Flip-Flop Attributes

Attribute Sequential Event-Driven

Manufacturer No No
MiU-Spec? No No

Power Level No No
Delay No Yes

Setup Delay No Yes
Hold Delay No Yes

State Yes Yes
Fan Out - Yes

Clock Level - Yes
J Level - Yes
K Level - Yes

JK Changes - Yes
Mode - Yes

Hold Delay Expired - Yes

times a J or K input changes. After the setup delay for each change expires, the count

is decremented. When the count is zero, the inputs are stable and ready to be docked.

(More properly, the Remove-Event should have been used to cancel the previous 'setup

delay expired' event; however, the functionality to support Remove-Events was not yet

implemented in the executive when the JK-Flip-Flop was developed and tested.) The

Mode attribute reflects the dynamic state of the JK-Flip-Flop, i.e., whether it is "setting

up", "holding", or "ready" as shown in Figure 10.

3.7 Summary

Fourteen event-driven, time-dependent domain primitives were developed during this

research. Twelve of these were modifications to existing non-event driven sequentially

executing primitives originally developed by Randour and Anderson (18) (1). The event-

driven primitives have greater complexity than the sequential primitives. The primitives

now access new architectural functions that allow the primitive to raise events. The new

primitives also have an added function - the SetState function - that interprets set-state

events and manages the internal and external representation of state.
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The domain engineering process adequately addressed most issues needed to imple-

ment this technology base. Missing from the process were those issues relating to the

domain-specific semantic checks. Because the process is geared toward domain-specific

software architectures, it assumes that all domain knowledge not contained within the do-

main objects will reside in the architecture or executive. This is not a satisfactory solution

for the domain-independent architectuie and executive used in Architect. However, the

process was not difficult to adapt to the unique Architect environment.
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IV. Design and Implementation of the Cruise Missile Technology Base

4.1 Introduction

The objectives of developing the cruise missile technology base were: to create a

set of time-driven primitives that are significantly more complex than the event-driven

primitives in the logic circuits domain; to learn more about the domain modeling process;

to determine architectural impacts/requirements on Architect. This chapter reviews the

design and implementation of the cruise missile technology base in the context of Tracz'

domain engineering process.

4.2 Stage 1: Define the Scope of the Domain

The main purposes of this stage are to bound the domain of interest and to produce

a diagram of the domain showing inputs, outputs, and high-level relationships. User needs

are also identified.

4.2.1 Scoping the Domain. Figure 15 shows a high level diagram of the cruise

missile domain. In addition to the missile, there axe support objects such as the launch

platform and maintenance facilities. There are also ancillary functions such as mission

planning, targeting, and damage assessment involved in the employment of the missile.

In flight, the missile interacts with the atmosphere and is affected by gravity. If the

missile has terrain-following capabilities, it must interact with the physical features of the

terrain. Some advanced missiles also receive navigational information from satellites. For

the purposes of this research, several simplifying assumptions were made as part of defining

the domain of interest.

9 The domain of interest does not include support objects such as launch platforms,

or ancillary functions such as targeting, mission planning, or damage assessment.

9 A calm atmosphere was assumed, i.e., wind was not modeled.

o A featureless terrain was assumed, i.e., no obstacles in the missile's flight path.

a No external navigational aids are required.

o Gravity is assumed to be constant.
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Figure 15. Elements of the Cruise Missile Domain

Based upon these simplifying assumptions, the domain of interest consists only of

the missile proper.

4.2.2 User Needs. Many user needs for this domain parallel the needs identified

in Section 3.2.4 for the logic circuit domain. Objects should exhibit the behaviors that are

of interest to the application specialist. The objects should also be consistent, predictable,

and configurable. However, the objects in this domain are more difficult to configure

than the logic circuit domain objects. The logic circuit objects are not inter-related and

there are few restrictions on how they can be composed into meaningful applications.

In contrast, the constituent objects of a cruise missile have relationships that constrain

their composition. For example, an engine could be connected to a fuel tank, but it

would not make sense to connect an engine to a guidance system. After the application

specialist composes the missile, he must assign attribute values to the constituent objects.

Relationships among the objects constrain the range of values that can reasonably be

assigned. For example, the weight of the missile affects engine power requirements, and

the supply of fuel constrains the missile's range. The problem the application specialist

faces then, is not how to compose the application, but rather how to configure the objects

once they have been composed. Semantic checks can help identify improper configurations.
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Ideally, the application specialist should only have to specify a set of requirements (range,

speed, weight, etc.), and the composition tool, using heuristics, would assist the application

specialist in assigning appropriate attribute values to meet those requirements. However,

such a capability is beyond the scope of this research.

4.3 Stage 2: Define/refine domain-specific requirements/concepts.

In this stage, system requirements and concepts were identified for the domain of

interest. An OOA was then performed using the methods of Rumbaugh (21).

4.3.1 System Requirements and Concepts. Two cruise missiles in use today are

the Air-Launched Cruise Missile (ALCM) and the Tomahawk sea-launched cruise missile.

While their specific capabilities differ, they have several common features. They both

have air-breathing engines that consume a liquid fuel. After launch, they are autonomous

in flight, requiring no external support from the launch platform or other ground-based

facilities, and they fly pre-programmed courses toward a designated target at subsonic

speeds. They fly at low altitudes to make detection more difficult (12, 13). These common

features were used in the design of the cruise missile model for this research. Even though

launch platforms themselves are not part of the domain, there must be a way to program the

route and target location and to 'launch' the missile. It is envisioned that these exogenous

activities/events will be performed by having the application specialist enter events into

an event manager prior to execution.

The purpose of a cruise missile is to deliver ordnance on a target. Starting from

an initial location with pre-programmed route and target information, the missile follows

the route toward the designated target. The route consists of a sequence of route points.

To follow the route, the missile must have a means to determine its current location in

reference to the next route point and to alter its course if necessary so that it reaches the

desired point. When it reaches a route point, the missile alters its course so that it heads

toward the next route point. When the missile turns toward the last route point, it arms

its ordnance. Upon reaching the last route point, which is the target point, it detonates

its ordnance.
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4.3.2 Object-Oriented Analysis. Based on these basic requirements and concepts,

an object model of the cruise missile was developed showing the objects, attributes, and

relationships. Figure 16 depicts this model. The cruise missile was decomposed into

four subsystems: propulsion, avionics, warhead, and airframe. The propulsion subsystem

performs the expected function of providing thrust for the missile. The avionics subsystem

provides the navigation and guidance functions for the missile. It also provides the steering

function to keep the missile's flight path on course. The airframe integrates the thrust and

steering commands to determine the missile's actual position, velocity, acceleration, and

heading. The warhead subsystem performs the ordnance function.

Each subsystem was then decomposed into a set of objects that collectively perform

the function of the subsystem. State diagrams and data flow diagrams were developed for

each object in a subsystem. The four subsystems are described below.

4.3.3 Propulsion Subsystem. In order to perform the propulsion function, this

subsystem requires a source of fuel, an engine, and a control to regulate the engine thrust.

To provide these functions, the propulsion system was decomposed into three components:

a fuel-tank, a jet-engine, and a throttle.

4.3.3.1 Fuel Tank. The main function of the fuel tank is to provide fuel

to the throttle. The tank was modeled as having an integral fuel pump which must be

started before fuel can be delivered to the throttle. As fuel is consumed, the weight of the

fuel tank decreases, altering the weight of the missile. The fuel tank's inputs, outputs, and

attributes are shown in Table 6.

Tablie 6. Fuel-Tank
Inputs Outputs Attributes

fuel-pump-start fuel-available? fuel-capacity
consumption-rate tank-weight empty-weight

current-time fuel-level
fuel-density
pump-on?
last-time
flow-rate
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Figure 17. Dynamic and Functional Flow Diagrams for the Fuel-Tank

The dynamic and functional models of the fuel-tank are shown in Figure 17. Fuel-

tank is activated when it receives a fuel-pump-start signal from guidance. If the fuel-level

is not empty, the fuel-tank outputs a fuel-available signal (simulates fuel pressure) to the

throttle. The flow-rate and last-time attributes, in conjunction with the current-time

inputs, are used to determine how much fuel was consumed since the last update. From

this, a new tank-weight is calculated using the empty-weight, fuel-density, and fuel-level

attributes.

4.3.3.2 Throttle. The throttle's function is to meter fuel to the jet-engine.

Table 7 shows the inputs, outputs, and attributes required to perform the throttle function.

Table 7. Throttle
Inputs Outputs I Attributes

fuel-available? requested-flow-rate max-flow-rate
throttle-index

The throttle's functional model is shown in Figure 18. Throttle receives a throttle-

index (a percentage value) from the autopilot. If the fuel-available? input signal from the
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Figure 18. Functional Flow Diagram for the Throttle

fuel-tank is true, then throttle outputs a requested-flow-rate to the jet-engine that is the

product of the throttle-index and its max-flow-rate attribute.

4.3.3.3 Jet Engine. The main function of the Jet-Engine is to provide

thrust to the airframe. To perform its function, it requires the inputs, outputs, and internal

attributes shown in Table 8.

Table 8. Jet-Engine

Inputs Outputs Attributes

start thrust max-fuel-flow-rate
inflow-rate consumption-rate thrust-factor

current-time mode

The dynamic and functional models of the Jet-Engine are shown in Figure 19. Jet-

Engine is activated when it receives a start signal from guidance. Upon receipt, it sets

its mode from "off" to "starting" and waits until the fuel inflow-rate is greater than zero.

When this occurs, Jet-Engine transitions its mode to "running" and outputs thrust to the

airframe. To help keep the model simple, the output thrust was assumed to be directly

proportional to the fuel consumption rate, with the thrust-factor attribute being the con-

stant of proportionality. Thus, thrust is determined by multiplying the consumption-rate

(the lesser of inflow-rate or max-fuel-flow-rate) by the thrust-factor. The consumption-rate
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Figure 19. Dynamic and Functional Flow Diagrams for the Jet-Engine

is also output to the fuel-tank so that the fuel-level in the tank can be updated as fuel is

consumed by the engine. If the inflow-rate drops to zero while the jet-engine is running,

the mode transitions back to "starting", simulating an 'out of fuel' condition.

4.3.4 Airframe Subsystem. The Airframe subsystem consists only of an airframe

object. The main function of the airframe is to transform the thrust, heading, pitch, and

weight data into new acceleration, velocity, and position vectors. Airframe's parameters

are shown in Table 9.

The Airframe's functional model is given in Figure 20. Using its last known ac-

celeration, position, and velocity, the airframe computes a new position and airspeed for
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Table 9. Airframe
Inputs Outputs Attributes

current-time position position
thrust velocity velocity

tank-weight acceleration acceleration
new-heading current-heading heading
new-altitude turn-rate

max-g-turn
lift-coefficient

drag-coefficient
weight

___________last-time

the current time. It next computes a new heading based upon the current heading, the

requested new-heading and its allowable turn-rate. The heading, elevation-rate, and air-

speed are then used to calculate new velocity vectors. Next, it computes new acceleration

vectors using thrust, weight, lift and drag coefficients, airspeed, and heading. A simplifying

assumption was made that drag is proportional to the square of the airspeed.

4.3.5 Avionics Subsystem. In order to perform the avionics function, this sub-

system needs to be able to estimate the missile's current state vectors (position, velocity,

and heading) and determine the errors from the intended course (2). It must then is-

sue the needed correction commands to the airframe and propulsion subsystems to alter

course and speed. To perform these functions, the avionics subsystem was decomposed

into Navigation, Guidance, and AutoPilot objects.

4.3.5.1 Navigation. Inertial navigation is based upon measuring the ac-

celeration of a vehicle and then integrating that acceleration to determine velocity and

position. The acceleration is integrated twice. The first integration yields velocity and the

second integration yields position. The resulting velocity and position axe relative to the

vehicle's initial velocity and initial position; thus inertial navigation requires that these

initial conditions be known (22:4). Any errors in the measured acceleration are also inte-

grated. If the measured acceleration is off by a constant amount, the velocity error will

increase linearly with time and the position error will grow at a parabolic rate. Over time,
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Figure 20. Functional Flow Diagram for the Airframe

even minute acceleration errors can result in unacceptably large (unbounded) position er-

rors. To overcome this limitation, inertial systems often use navigation aids (nay-aids)

to improve their accuracy. Nay-aids fall into two categories: velocity aiding and position

aiding. Doppler radar is an example of the former; Tactical Air Navigation (TACAN)

and Long Range Navigatios (LORAN) are examples of the latter. The Giobal Positioning

System (GPS) can provide both (13:179).

The function of the Navigation object is to provide estimates of position, velocity, and

heading to the Guidance object. It contains the inputs, outputs, and internal attributes

as shown in Table 10.

The Navigation object simulates an inertial system with a type of internal position

aiding called terrain contour matching (TERCOM). TERCOM requires that the flight path

has been previously mapped and the terrain elevation data stored in a database. During

flight, an onboard radar altimeter detects the contours of the terrain beneath the missile,

and an onboard processor compares the altimeter returns to the contour information in
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Table 10. Navigation
Inputs Outputs Attributes

current-time nay-position position
missile-acceleration nav-velocity velocity

missile-velocity nay-heading acceleration
missile-position error-factor
guidance-update mode

last-time

the database. When a match is found, the INS position is updated with the correct

coordinates. When the radar altimeter is transmitting, the missile is more vulnerable to

detection. Therefore, the number of TERCOM updates is held to a minimum consistent

with navigation accuracy requirements (13:220-225).

The TERCOM system is not modeled here, but its effect is modeled by having very

low (zero) error in the z-axis estimate of position (i.e., nay estimate of altitude = missile

altitude). TERCOM is modeled by navigation receiving position updates (nay estimate of

position = missile position) whenever route points are reached. The error-factor attribute

is used to generate a random error which is added to the input acceleration, simulating

errors in the acceleration measurement. Over time between updates, the errors will cause

the INS estimates to drift.

The dynamic and functional models of the Navigation object are shown in Figure 21.

The Navigation object has three modes: align, navigate, and update. In the align mode,

it sets its internal position and velocity attributes to the values output by the Airframe

object. This ensures that it begins with the correct initial conditions. In the navigate

mode, it provides position, velocity, and heading estimates which are subject to errors

as explained above. In the update mode, it updates its internal position to that of the

Airframe object.

4.3.5.2 Guidance. The purpose of the Guidance object is to generate error

signals which can be used to alter the heading, altitude, and speed of the missile so that the

missile arrives at the proper locations at the proper times. It also controls the sequencing
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of other objects. To perform this mission, Guidance has the inputs, outputs, and internal

attributes show in Table 11.

Table 11. Guidance
Inputs Outputs Attributes

nav-position heading-error route-points
nay-velocity altitude-error mode
nav-heading speed-error nav-updated?
current-time start-fuel-pump

start-jet-engine
arm-warhead

detonate-warhead

The dynamic and functional models of the throttle are shown in Figure 22. The

Guidance object has four modes: idle, launch, direct-to-point, and terminal. In the idle

mode, it sends a start-fuel-pump signal to the Fuel-Tank object. It then waits for its

mode to be changed to launch via a SetState command (the application specialist inserts a

SetState event in the event manager prior to execution). When its mode changes to launch,

Guidance sends a start-jet-engine command to the Jet-Engine object and transitions to

the direct-to-point navigation mode.

Guidance contains a list of route-points that the missile is to follow. Upon entering

the direct-to-point mode, Guidance calculates the distance from the current position, as

estimated by the Navigation object, with the position of the first route-point in its list.

It then calculates the required heading and speed to arrive at that point at the indicated

time. Next, it compares these calculated values with current heading, altitude, and speed

to determine its heading-error, altitude-error, and speed-error outputs.

In the time-driven mode, the Update function is called on a periodic schedule. How-

ever, the actual arrival time at a route-point is asynchronous with the update schedule, i.e.,

the missile may arrive at the route point between Update calls. Guidance must therefore

determine the best time to perform an activity associated with arrival at a route-point:

either just before it gets there, or just after it passes. To make this decision, Guidance

calculates a projected distance for the next time interval based upon current speed and

heading. At the time projected distance exceeds current distance, the missile is as close as
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it will get and activities associated with arrival are performed at this time. In an execution

mode that permits asynchronous events to be raised by the objects, this step would not

be required. However, mixed-mode execution is not currently supported in Architect.

When Guidance determines that it has arrived at a route point, it sends a nay-update

signal to Navigation, selects the next route-point from the list, and calculates error signals

for that new route-point. When the last route-point is selected, Guidance sends an arm-

warhead signal to the Warhead object and enters the terminal mode. In terminal mode,

Guidance generates error signals as before. When the last route-point (target) is reached,

Guidance sends a detonate-warhead signal to the Warhead object.

j.3.6 AutoPilot. The AutoPilot object transforms heading-error and altitude-

error signals from the Guidance object into heading and elevation control commands for

the Airframe object. It also transforms speed-error signals into throttle commands for the

Propulsion subsystem. AutoPilot consists of the inputs, outputs, and internal attributes

shown in Table 12.

Table 12. AutoPilot

Inputs Outputs Attributes

speed-error throttle-index throttle-authority
heading-error heading-command throttle-sensitivity
altitude-error altitude-command

missile-velocity
missile-heading
missile-altitude

current-time

Figure 23 shows the functional model of the Autopilot object. The Autopilot object

has no interesting states so no dynamic model was developed. Considerable liberty was

taken in the design of the AutoPilot object to simplify the way the Airframe object's

heading and altitude are controlled. Whereas a real autopilot outputs roll and pitch cues

which translate into rates of changes in heading and altitude (2:15), this autopilot object

outputs the desired heading and the altitude error. The desired values are determined by

adding the actual missile value from the Airframe with the corresponding error value from

Guidance.
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The throttle-index does not control velocity directly; it controls the Propulsion sub-

system's thrust, which alters the Airframe's acceleration. The required throttle setting

to correct a given speed error depends upon several parameters, including the Airframe

object's current velocity and drag-coefficient, the Throttle object's max-flow-rate and the

Jet-Engine object's thrust-factor.

Two simplifying assumptions makes it simple to calculate the desired throttle-index.

The first assumption is that drag is simply proportional to the square of the airspeed. In

reality, drag has a second component that is inversely proportional to the square of the

airspeed (9:138). Assuming high relative airspeeds, the second component can be ignored

for the purposes of this research. The second simplifying assumption is that the missile's

vertical velocity component can be ignored in calculating the required throttle-index. This

assumption would result in higher than desired speeds during descents and slower than

desired speeds during climbs. Since cruise missiles usually fly at fairly constant altitudes

(13:222), this assumption seems reasonable.

A missile in level flight will have zero acceleration when the thrust and drag have

equal magnitudes.

Thrust - Drag = 0

From the description of the Propulsion subsystem above, thrust was found to be equal to

the product of the fuel-consumption-rate and the thrust-factor. Also, the fuel consumption-

rate was found to be equal to the product of the throttle-index and the max-flow-rate.

Thus,

Thrust = ThrottleIndex x MaxFlowRate x ThrustFactor

By the first simplifying assumption above,

Drag = Cd * V2
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where Cd is the drag-coefficient and V is the airspeed.

Combining the last two equations and solving for throttle-index yields,

ThrottleIndex = Cd X V2

MaxFlowRate x ThrustFactor

= ThrottleSensitivity x V 2

where all the constant terms have been lumped into a new constant, Throttle-Sensitivity.

To ensure proper operation, this AutoPilot attribute must be set to the correct value when

composing an application. The throttle-authority attribute defines the minimum value

that Autopilot can set for the throttle-index (so as not to set the throttle-index below that

required to idle the engine).

4.3.7 Warhead Subsystem. The warhead subsystem consists only of the Warhead

object. The warhead's function is to terminate the simulation by sending a STOP-EVENT

to the application executive event manager when it receives a detonate signal f-gm guid-

ance. Warhead has the inputs, outputs, and internal attributes shown in Table 13.

Table 13. Warheadl

Inputs Outputs i Attributes

current-time yield
arm armed?

detonate

Functional flow and state diagrams were not required for the Warhead object due

to its simplicity. The warhead has two states: idle and armed. Warhead begins in the

idle state. When guidance determines that the next-to-last route point has been reached,

it sends an arm signal to the warhead causing the warhead to transition to the armed

state. Once in t'_,e armed state, warhead waits for guidance to send a detonate signal when

guidance determines that the missile has reached the last route point (assumed to be the

target point). Upon receipt of the detonate signal, warhead sends a STOP-EVENT to the
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event manager to terminate the simulation. If the missile fails to reach the target for some

reason (runs out of fuel, incorrectly specified parameters, etc.), there should be a backup

Stop-Event in the event manager to terminate the simulation.

Figure 24 shows the functional model of the entire cruise missile.

4.4 Stage 3: Define/refine domain-specific design and implementation constraints.

The purpose of this stage of the process is to identify constraints on the architecture

imposed by applications in the domain. There are two broad categories of constraints:

those that ensure correctness of the applications, and those that ensure efficiency of the

applications.

The architectural modifications made to support the event-driven logic circuits do-

main were found to be adequate to support correct execution in the time-driven mode.

No additional architectural requirements were identified for the cruise missile domain, but

new executive services were required to support the time-driven applications.

4.6 Stage 4: Develop domain architectures/models

No additional architectural modifications were identified for this domain; time-driven

executive services were developed by Welgan (25).

In determining how to control the missile's speed, attributes in four different primi-

tives were found to be inter-related: Airframe drag-coefficient, the Jet-Engine thrust-factor,

Throttle max-flow-rate, and Autopilot throttle-sensitivity. If the application specialist is

not aware of the relationships between these attributes, he could specify an erroneous appli-

cation that does not control the missile's speed as desired. To prevent this from occurring,

and to help alleviate the burden on the application specialist, domain-specific semantic

checks were developed to verify that the four attributes are compatible prior to execution.

If the proper relationships are not met, the application specialist is warned and shown

the correct value for throttle-sensitivity. The architectural interface to the domain-specific

semantic checks discussed in Section 3.5.4 was followed for this domain.

58



I

"• i ii

2 l-

Figure 24. Functional Model of the Cruise Missile

59



4.6 Stage 5: Produce/gather reusable workproducts

4.6.1 Development. The eight objects identified in stage 2 were mapped into

Architect during this stage. There were no existing components, as the circuits domain

had, so all objects were developed from scratch. The first step was to develop a Refine

domain model that defined the object class hierarchy of the domain objects. This hierarchy

paralleled the structure identified in the object model of Figure 16. Also included in the

domain model were domain-specific data types required by the primitives. These included

three-dimensional vectors used for position, velocity, and acceleration data, and route-point

definitions.

The next step was to code the primitives in Refine. The three primitives in the

propulsion subsystem were coded first. The propulsion primitives provided a relatively

simple set of inter-related primitives that could later be used to test the time-driven exec-

utive.

The OCU model was found to be quite satisfactory for this domain. The time-

driven primitives exactly paralleled the event-driven primitives in structure. Each primitive

has Update and SetState functions, a set of attributes, and uses the same architectural

interfaces that the event-driven primitives use. Internally, the only difference between these

time-driven primitives and the event-driven primitives is that the time-driven primitives

do not raise application events.

In the event-driven domain, primitives did not know about the passage of time except

through the receipt of SetState events. The time-driven primitives receive time as an input,

so they do not need to raise SetState events to inform them that time has elapsed. Since

the time-driven primitives do not generate SetState events, there is no need to generate

Remove events.

When an event-driven primitive calls the set-export function to update its external

state, the architecture returns a list of Update events for the consumers of that external

state as part of the stimulus-response paradigm. The time-driven primitives operate with

a different paradigm; they are updated on a periodic schedule by the executive. The

stimulus-response paradigm does not apply to them. The Update events returned to the
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time-driven primitives by the set-export function are filtered out by the primitives and not

passed up the subsystem tree to the executive. Thus, the same architectural interface can

be used for the event-driven and time-driven primitives.

After the primitives were coded, a domain-specific language was developed using

the Dialect grammar tool as discussed in Section 3.6.3. The DSL was used to create

applications and parse them into Architect for testing. Validation of the cruise missile

technology base is discussed in the following section.

4.6.2 Validation. Testing the cruise missile objects was more difficult than

the logic circuits objects because of their increased complexity and the interdependencies

among the objects. The propulsion subsystem objects were tested first because of their

concurrent development with the executive. The propulsion subsystem requires two ex-

ternal inputs to start the tank's fuel pump and to start the engine. These inputs were

specified to be of category signal and type boolean, the same as the inputs and outputs in

the circuits domain. For test purposes, the DSL was modified to include a switch object

from the circuits domain so that a switch could be used to supply the needed inputs. The

switch was modified so its operation did not require it to raise a SetState event. The thrust

and weight outputs from the subsystem were monitored with debug statements in the en-

gine and tank primitives, respectively. Other internal attributes were examined using the

Refine Browse function to examine the object base.

After the propulsion subsystem and the executive were validated, a complete missile

application was composed following the structure shown in Figure 16. The application

was defined as a top-level subsystem, representing the missile, with subordinate propul-

sion, airframe, avionics, and warhead subsystems. Each subordinate subsystem in turn

contained the constituent objects making up that subsystem. The domain objects were

defined with the following attribute values:
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fuel-tank the-tank
capacity: 720.0 % in mass or volume units
empty weight: 50.0 % pounds

fuel level: 100.0 % same units as capacity
flow rate: 0.0
pump off
last time: 0
fuel density: 1.0 % pounds/unit of capacity

throttle the-throttle
max flow rate: 0.2 %. pounds/sec

jet 7,,igine the-engine
thrust factor: 62500.0 % seconds (specific impulse)
max flow rate: 0.2 % pounds/sec (recommend same as throttle)
mode: off

airframe the-airframe
position: (0.0, 0.0, 100.0) % feet
velocity: (200.0, 0.0, 0.0) % fps
acceleration: (0.0, 0.0, 0.0) % fps/sec
heading: 0.0 % radians
turn rate: 0.0 %. radians/sec
max g: 5.0 %, fps/s ("g"-turn limit)
lift coef: 0.4 %. (not currently implemented)
drag coef: 0.05 % pounds-sec-sec/ft-ft
weight: 2000.0 %. weight in pounds less tank weight
last time: 0

navigation the-navigation
position: (0.0, 0.0, 100.0) % (same as airframe position)
velocity: (200.0, 0.0, 0.0) % (same as airframe velocity)
acceleration: (0.0, 0.0, 0.0) %. (same as airframe acceleration)
error factor: 0.00 %. (recommend less than 0.10)
mode: align

guidance the-guidance
route points: ( 4000.0, 0.0, 100.0) route 20,

( 4000.0, 4000.0, 100.0) route 35,
C 0.0, 4000.0, 100.0) route 50,
C 0.0, 0.0, 100.0) target 65

autopilot the-autopilot
throttle sensitivity: 0.000004 %. (set by semantic checks)
throttle authority: 0.05 %. (minimum throttle setting)

warhead the-warhead
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Engineering judgement was used to determine attribute values for the domain objects.

These values define a logically consistent composition, but are not intended to represent

actual values of any specific missile. As such, this should be regarded as an illustrative

example.

The fuel tank initially contains 100 pounds of fuel although its capacity is 720 pounds.

The two engine attributes determine its maximum thrust. This engine can provide up to

12,500 pounds of thrust when consuming fuel at the rate of 0.2 pounds/second. The en-

gine's thrust and the airframe's drag coefficient determine the missile's maximum airspeed

in level flight.

VMAX = ý[ThrUStMAXICd

In this case, the missile's maximum airspeed is 500 fps (435 knots). The airframe is also

specified to weigh 2000 pounds and be capable of making a 5 'g' turn.

The initial conditions for the missile are defined in the airframe object's position,

velocity. heading, and turn rate attributes. In this example, the missile begins at 100 feet

over the origin with a constant velocity of 200 feet per second (fps) along the X-axis. The

intended flight path is defined by the guidance object's route point list. The four route

points in the list define a square with sides of 4000 feet. Although obviously not a realistic

flight path, this course was chosen for several reasons. The sharp turns tested the missile's

ability to make quick heading adjustments and get back on course toward the next route

point. The short distances between route points tested the missile's ability to accurately

regulate its airspeed to make the route point rendezvous at the required times. The closed

course verified proper behavior in all directions of flight.

The application was then parsed into Architect and executed. Figure 25 shows an

X-Y plot of the missile's path as it maneuvered around the closed course.

Figure 26 shows a time plot of the missile's airspeed over the closed course. Beginning

with an initial airspeed of 200 feet per second (174 knots), the airspeed drops until the

engine begins producing thrust. (The way the engine sequences through its modes has
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since been changed to reduce the long delay time between "launch" and the production of

thrust.) The airspeed then increases as the missile seeks to find the right speed to make it

arrive at the first route point at time 15. Although the missile was able to meet the first

and subsequent route point times, the airspeed curve suggests that a more sophisticated

control algorithm might be needed to smooth out the variations during turns.

4.6.3 Performance Considerations. The primitives in this domain are more

complex than the circuits domain primitives. They typically have more inputs and outputs

and their functions handle arithmetic and trigonometric calculations instead of simple

boolean expressions. These primitives can be expected to execute more slowly due to

their increased computational requirements. In a time-driven application, the executive

will invoke updates on a periodic schedule. The number of update cycles required for an

application in this domain will depend upon the simulation time needed to complete the

'mission' and the rate at which updates are invoked.

In a scenario in which the missile flies a distance of 600 nautical miles at an average

speed of 300 knots, the application will require two hours of simulated time to execute. If

the period of the update schedule is one second, then 7,200 update cycles will occur. Each

of the eight primitives is updated during a cycle; therefore, the application will require

57,600 updates. Architect runs in Refine which uses an underlying Lisp environment.

Lisp is an interpreted language and executes rather slowly. Long execution times can,

therefore, be expected for cruise missile applications. Although execution efficiency is not

a goal of Architect, long execution times needed to test and validate a domain can make

an environment difficult to work in. Two workarounds can be used to reduce the number

of update cycles: the flight time can be reduced and the update period can be lengthened.

The first workaround reduces scenario realism; the second reduces simulation accuracy.

Fortunately, neither scenario realism nor simulation accuracy were critical to this research.

The only available workaround was reduced flight times because the current executive does

not support variable update intervals.
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The application composed in Section 4.6.2 required 65 seconds of simulated time to

complete. Actual execution time was approximately 25 minutes. Longer 'missions' can be

expected to take proportionately longer.

4.7 Summary

Eight time-driven cruise missile domain objects were developed during this part of

the research. These objects can be composed into propulsion, avionics, airframe, and

warhead subsystems that in turn define a complete cruise missile application. No new

architectural modifications to Architect were required to support the time-driven domain.

An application was composed and executed to verify proper behavior.
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V. Conclusions and Recommendations

5.1 Introduction

This chapter provides a summary of the accomplishments of this research. It be-

gins with a review of the original goals and discusses the results. Then, suggestions for

improvements and further research in this area are presented.

.5.2 Research Goals

The primary goals of this research were to demonstrate the feasibility of composing

time-dependent specifications using the OCU/Architect architecture and to extend the

Architect technology base by developing two diverse domain models for time-dependent

domains. The first step was to understand the domain analysis process. Domain analysis

is a rather new field and its techniques and processes are still maturing. A process recently

introduced by Tracz, Coglianese, and Young was chosen as a guide for modeling the two

new domains.

5.3 Results

This research showed that the OCU/Architect architecture, with modifications, can

support the composition and execution of time-dependent specifications. Demonstration

required the simultaneous development of new time-dependent primitives, modification of

the Architect architecture, and development of an executive. The new primitives devel-

oped during this research drove several changes to Architect's software architecture and

executive. These changes were made by Gool (6) and Welgan (25).

5.3.1 Impact on the Architecture and Executive.

e Events were added to support the event-driven and time-driven primitives. The

architectural structure was modified to give subsystems 'In-Event' and 'Out-Event'

areas.
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"* Two new architecture functions were developed to provide the interface between the

primitives and the executive. These new functions allow the primitives to generate

events to control their own behavior.

"* The existing set-export architecture function was modified to support the stimulus-

response paradigm. Whenever an event-driven object updates an export value, the

set-export function generates Update-Events for every consumer of that export data.

"* Domain knowledge was removed from the subsystem update function. The sequen-

tial control algorithm in the subsystem update function was replaced with domain-

independent event servicing and routing routines.

"* The OCU SetState function was changed from a domain-independent function to a

primitive-specific function.

"* The ability to preset import and export values prior to execution was incorporated

to support applications requiring initial conditions.

"* The architectural semantic-checks function now checks for the presence of domain-

specific semantic checks to allow for more realistic composition rules.

5.3.2 Architect's New Capabilities. Fourteen event-driven logic circuit domain

primitives and eight time-driven cruise missile domain primitives were developed to demon-

strate time-dependent behaviors. These new technology bases impart several new capa-

bilities to Architect. Event-driven and time-driven applications can now be composed.

These applications exhibit behaviors that could not be specified in Architect prior to this

research.

e Delays - Three types of delay were incorporated into the design of the various logic
circuits primitives.

1. Transport Delay - simulates propagation delay through a device, that is, the
time delay between when changes on the input are expressed as changes in
output.

2. Inertial Delay - simulates the rejection of "noise" on inputs. Signals must be
stable for a period of time before they are considered valid.

3. Delta Delay - used to enforce 'causality' in the stimulus-response paradigm.
Objects without delays cannot update their exports immediately; they must
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schedule a set-state event for themselves (with zero time offset) to change their
outputs.

" Periodicity - A primitive with an astable output was developed to demonstrate a
"free-running" device with periodic behavior.

" Transience - A primitive with a monostable output was developed and tested to
demonstrate a device with transient behavior.

" Feedback - Applications with feedback can now be specified if initial conditions are
set in the import and export areas.

" Exogenous events - The application specialist can preload events prior to execution.
These can be used to initiate execution or change an object's state at predetermined
times to control the behavior of the application. They could also be used to insert
"malfunctions" into the application.

Despite the enhanced capabilities provided by the event-driven and time-driven tech-

nology bases, applications in these domains are easier to compose than the non-event-driven

sequential applications because there is no need to specify update algorithms for each sub-

system; one or more events can be used to trigger execution of the application. Another

product of this research was the incorporation of simple domain-specific semantic checks

to provide additional composition rules for circuit domain primitives.

5.4 Evaluation of the Domain Engineering Process

Tracz' five-stage domain engineering process proved to be an acceptable tool for this

research. Even though there were differences between what Tracz was trying to achieve

and the objectives of this research, the process could be followed with some tailoring.

"* Stage 1: Define the scope of the domain. For the circuits domain, this stage was not

as useful since the research was beginning with an established set of objects. When

the need for additional objects was found, this stage was revisited in accordance

with the iterative nature of the process. For the cruise missile domain, this stage was

directly applicable.

" Stage 2: Define/refine domain-specific concepts/requirements. No changes were iden-

tified for this stage of the process.

" Stage 3: Define/refine domain-specific design and implementation constraints. Only

a small part of this stage was applicable. Many of the constraints that need to be
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identified are those that affect the real-time performance of the application. Architect

is not currently concerned with specifying the real-time behavior of applications.

Constraints such as 'how fast', 'how often', and 'how big' are not applicable to

Architect. Other constraints that determine the implementation language, accuracy,

user interface, etc., do not apply because these are determined by the underlying

Refine and Lisp environments upon which Architect runs.

* Stage 4: Develop domain architectures/models. Tracz' goal was to develop domain-

specific software architectures for composing avionics software applications. Archi-

tect, in contrast, is designed to be domain-independent with respect to its software

architecture. The executive is considered part of a DSSA but is a separate entity in

Architect. Domain knowledge had to be analyzed for domain-specificity or domain-

independence to determine if the knowledge should reside in the domain or in the

architecture/executive. When a determination cannot be made due to lack of expe-

rience with other domains, the default decision should be to embed the knowledge

in the domain. The goal of this stage, then, is to modify the existing architecture

and executive to incorporate newly identified domain-independent functionality. The

domain-specific semantic checks were also developed in this stage.

* Stage 5: Produce/gather reusable workproducts. This stage was directly applicable

to both domains. No changes to the process were identified.

5.5 Suggestions for Improvements

5.5.1 Event Ordering. Even though causality is enforced by the stimulus-response

paradigm at the primitive level, the possibility exists for events to be processed out of

order. The architecture handles events in sets rather than sequences. Since order is not

important in sets, there is no guarantee that order will be preserved. Events are sorted at

the executive level by time and priority. Events of the same type have equal priority. In

a system without delays, all events will have the same time stamp and so many different

permutations of order are possible, only one of which may be correct.

71



5.5.2 Architectural Syntax and Semantic Checks. The architectural syntax and

semantic checks enforced by Architect to determine if two components can be connected

were suitable for the circuits domain but restrictive for the cruise missile domain.

Import and export objects have two attributes category and type. For a connection

to be made between and import object and an export object, the corresponding values of

these two attributes must match. In the circuits domain, all imports and exports are of

category signal and type boolean, allowing the output of any object to be connected to the

input of any other object.

In the cruise missile domain, a properly composed application can only be connected

in one way. In assigning categories to the different import and export data, the conven-

tion of using standard domain terminology such as position, velocity, acceleration, angle,

flow-rate, etc., was adopted in the belief that the most general name would provide the

greatest flexibility for reuse. While this may be true, it also makes it more difficult for

the application specialist to compose applications because he must decide which import

or export to select when more than one possibility exists. More sophisticated syntax and

semantic rules could resolve the ambiguities and alleviate the burden on the application

specialist without compromising reusability.

5.5.3 Visualization Support. Monitoring the execution of an application such

as the cruise missile is difficult without graphical support. The Automated Programming

Technologies for Avionics Software (APTAS) system has the capability to display motion

data from a file (10). Using the display capabilities of APTAS to visualize the results from

an execution in Architect would improve the ability to evaluate the performance of cruise

missile applications.

5.6 Suggestions for Further Research

Much has been learned about the :equirements for a system such as Architect from

the single domain of sequentially executed logic circuits. More was learned during this

research effort which produced an event-driven logic circuits domain and a time-driven
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cruise missile domain. But much remains to be learned; following are suggested areas for

further research.

e Extending the Technology Base. Further study of the new technology bases is needed

to improve understanding of the requirements for a composition tool such as Ar-

chitect. These domains should not be considered definitive, however. Several more

technology bases need to be developed to obtain experience with a wide spectrum of

domains and execution modes. A moving vehicle technology base executing in the

event-driven mode should be developed. Current cruise missile applications require

all components to be time-driven at the same rate. Variable update rates and mixed-

mode execution with a combination of event-driven and time-driven execution need

to be investigate-d.

* Representation of Domain Knowledge. More research needs to be done on encod-

ing domain knowledge not contained within the primitives. Currently only simple

domain-specific semantic checks are supported. The cruise missile domain analy-

sis process identified the need for more sophisticated tools to help the application

specialist configure the domain objects.

* Dynamic Domains. Domains that require dynamic allocation and deallocation of

objects require sophisticated domain knowledge above the primitive level. The do-

main knowledge must determine where a newly created object fits in the application

structure, how the object is "connected" to other objects in the application, and, in

the sequential non-event driven mode, how to modify the update algorithm of the

object's parent subsystem.

* Multiple-domain Applications. A domain engineer defines the boundary of a domain

by examining the range of applications that are required to be composed; if a new ap-

plication is later identified, the domain engineer may need to expand the boundary

by adding new primitives. If the required primitives already exist in another do-

main, the domain engineer should not have to recreate them in his domain. Rather,

he should be abl- to pull primitives from other domains into his application. Ar-

chitect's domain-independent software architecture supports this concept; Dialect's
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limit on grammar inheritance does not. When the object-base being developed by

Cecil and Fullenkamp (3) comes online, Dialect will no longer be required. Multiple

domain applications will then be easy to compose from an architectural (syntax and

semantics) viewpoint. Further work is needed to understand how domain-specific

knowledge from the different domains interact in a single application.

5.7 Conclusion

This research has given Architect two new validated technology bases which can be

used to compose a wide variety of applications. The knowledge gathered in the process has

provided a significant step toward better understanding the requirements for a domain-

oriented application composition system such as Architect.
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Appendizx A. REFINE Code Listings for Architect

The REFINE source code for Architect and the implemented time-dependent domains

may be obtained, upon request, from:

Maj Paul Bailor
AFIT/ENG
2950 P Street
Wright-Patterson AFB, OH 45433-7765

(513)255-9263
DSN 785-9263
email: pbailorgafit.af.mil
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